reduced-8 results

We use Intersection over Union (IoU) and Overall Accuracy (OA) as metrics. For more details hover the curser over the symbols or click on a classifier. In order to sort the results differently click on a symbol.

NameA_IoUOA[s]IoU 1IoU 2IoU 3IoU 4IoU 5IoU 6IoU 7IoU 8
1MS-RRFSegnet0.7250.9302560.000.8950.8360.8370.4310.9600.5360.3900.917
Anonymous submission
2RandLA-Net0.7740.9481.000.9560.9140.8660.5150.9570.5150.6980.768
RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds (CVPR 2020, Oral)
3PAI_Conv0.7640.9441.000.9640.9040.8670.4960.9560.4540.6900.784
Anonymous submission
4PAI-Conv-v20.7200.9211.000.8870.7790.8560.4660.9530.4370.6210.764
Anonymous submission
5AutoNN0.7630.941838.600.9580.8870.8410.4630.9520.4550.7440.808
Anonymous submission
6KP-FCNN0.7460.929600.000.9090.8220.8420.4790.9490.4000.7730.797
H. Thomas, C. Qi, J. Deschaud, B. Marcotegui, F. Goulette, L. Guibas. KPConv: Flexible and Deformable Convolution for Point Clouds. In The IEEE International Conference on Computer Vision (ICCV), 2019.
7RGNet0.7470.9451.000.9750.9300.8810.4810.9460.3620.7200.680
Fast Point Cloud Registration Using Semantic Segmentation - DICTA 2019
8GACNet0.7080.9191380.000.8640.7770.8850.6060.9420.3730.4350.778
Anonymous submission
9shellnet_v20.6930.9323000.000.9630.9040.8390.4100.9420.3470.4390.702
Z. Zhang, S. Hua, K. Yeung. ShellNet: Efficient Point Cloud Convolutional Neural Networks using Concentric Shells Statistics. In International Conference on Computer Vision (ICCV), 2019.
10PCSNet0.7120.9431500.000.9710.9500.8790.5250.9410.3880.3550.687
11NI_IMP_EU_TEST10.7270.9322400.000.9400.8940.8650.4550.9340.2730.7210.734
IMP EU SunWei
12SPGraph0.7320.9403000.000.9740.9260.8790.4400.9320.3100.6350.762
Large-scale Point cloud segmentation with superpoint graphs, Loic Landrieu and Martin Simonovsky, CVPR2018
13shell_v20.6850.9323000.000.9730.9100.8370.3970.9310.2710.4480.715
Anonymous submission
14RSSP0.6470.920359.000.9160.8700.8700.5250.9300.1580.3200.589
Anonymous submission
15MSDeepVoxNet0.6530.884115000.000.8300.6720.8380.3670.9240.3130.5000.782
Classification of Point Cloud Scenes with Multiscale Voxel Deep Network, Xavier Roynard, Jean-Emmanuel Deschaud and François Goulette
16RF_MSSF0.6270.9031643.750.8760.8030.8180.3640.9220.2410.4260.566
H. Thomas, J. Deschaud, B. Marcotegui, F. Goulette, Y. Le Gall. Semantic Classification of 3D Point Clouds with Multiscale Spherical Neighborhoods. In 3D Vision (3DV), 2018 International Conference on, 2018.
17new_net0.5950.879100000.000.8450.7090.7660.2610.9140.1860.5650.514
J. Contreras, J. Denzler. Edge-Convolution Point Net for Semantic Segmentation of Large-Scale Point Clouds. In IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium, 2019.
18SEGCloud0.6130.8811881.000.8390.6600.8600.4050.9110.3090.2750.643
L. P. Tchapmi, C. B.Choy, I. Armeni, J. Gwak, S. Savarese, SEGCloud: Semantic Segmentation of 3D Point Clouds, International Conference on 3D Vision (3DV), 2017
19SnapNet_0.5910.8863600.000.8200.7730.7970.2290.9110.1840.3730.644
Unstructured point cloud semantic labeling using deep segmentation networks. A. Boulch, B. Le Saux and N. Audebert, Eurographics 3DOR 2017
20OctFCNNet0.6480.8941200.000.9430.7560.7860.3420.9040.2570.4780.721
Anonymous submission
21OctreeNet_CRF0.5910.899184.840.9070.8200.8240.3930.9000.1090.3120.460
F. Wang, Y. Zhuang, H. Gu, and H. Hu, OctreeNet:A Novel Sparse 3D Convolutional Neural Network for Real-time 3D Outdoor Scene Analysis, submitted to IEEE Transactions on Automation Science and Engineering.
22DeepVoxNet0.5710.848100000.000.8270.5310.8380.2870.8990.2360.2980.650
Classification of Point Cloud Scenes with Multiscale Voxel Deep Network, Xavier Roynard, Jean-Emmanuel Deschaud and François Goulette
233D-FCNN-TI0.5820.875774.000.8400.7110.7700.3180.8990.2770.2520.590
L. P. Tchapmi, C. B.Choy, I. Armeni, J. Gwak, S. Savarese, SEGCloud: Semantic Segmentation of 3D Point Clouds, International Conference on 3D Vision (3DV), 2017
24DeePr3SS0.5850.8890.000.8560.8320.7420.3240.8970.1850.2510.592
F. Lawin, M. Danelljan, P. Tosteberg, G. Bhat, F. Khan, M. Felsberg. Deep Projective 3D Semantic Segmentation. In , 2017.
25TMLC-MSR0.5420.8621800.000.8980.7450.5370.2680.8880.1890.3640.447
Timo Hackel, Jan D. Wegner, Konrad Schindler: Fast semantic segmentation of 3d point clouds with strongly varying density. ISPRS Annals - ISPRS Congress, Prague, 2016
26DeepNet0.4370.77264800.000.8380.3850.5480.0850.8410.1510.2230.423
Anonymous submission
27DLUT_SR0.5630.8601.000.9530.8490.5480.2960.8320.1920.3200.518
Anonymous submission
28TML-PCR0.3840.7400.000.7260.7300.4850.2240.7070.0500.0000.150
Mind the gap: modeling local and global context in (road) networks: Javier Montoya, Jan D. Wegner, Lubor Ladicky, Konrad Schindler. In: German Conference on Pattern Recognition (GCPR), Münster, Germany, 2014
29NLNN0.2030.5391.000.0000.0000.8640.2510.5060.0000.0000.000
Anonymous submission
30WYJ_JTP0.0020.0061000.000.0010.0000.0010.0050.0040.0070.0000.000
Anonymous submission

References


  @inproceedings{hackel2017isprs,
   title={{SEMANTIC3D.NET: A new large-scale point cloud classification benchmark}},
   author={Timo Hackel and N. Savinov and L. Ladicky and Jan D. Wegner and K. Schindler and M. Pollefeys},
   booktitle={ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences},
   year = {2017},
   volume = {IV-1-W1},
   pages = {91--98}
 }