reduced-8 results

We use Intersection over Union (IoU) and Overall Accuracy (OA) as metrics. For more details hover the curser over the symbols or click on a classifier. In order to sort the results differently click on a symbol.

NameA_IoUOA[s]IoU 1IoU 2IoU 3IoU 4IoU 5IoU 6IoU 7IoU 8
1DeePr3SS0.5850.8890.000.8560.8320.7420.3240.8970.1850.2510.592
F. Lawin, M. Danelljan, P. Tosteberg, G. Bhat, F. Khan, M. Felsberg. Deep Projective 3D Semantic Segmentation. In , 2017.
2SnapNet_0.5910.8863600.000.8200.7730.7970.2290.9110.1840.3730.644
Unstructured point cloud semantic labeling using deep segmentation networks. A. Boulch, B. Le Saux and N. Audebert, Eurographics 3DOR 2017
3SEGCloud0.6130.8811881.000.8390.6600.8600.4050.9110.3090.2750.643
L. P. Tchapmi, C. B.Choy, I. Armeni, J. Gwak, S. Savarese, SEGCloud: Semantic Segmentation of 3D Point Clouds, International Conference on 3D Vision (3DV), 2017
43D-FCNN-TI0.5820.875774.000.8400.7110.7700.3180.8990.2770.2520.590
L. P. Tchapmi, C. B.Choy, I. Armeni, J. Gwak, S. Savarese, SEGCloud: Semantic Segmentation of 3D Point Clouds, International Conference on 3D Vision (3DV), 2017
5TMLC-MSR0.5420.8621800.000.8980.7450.5370.2680.8880.1890.3640.447
Timo Hackel, Jan D. Wegner, Konrad Schindler: Fast semantic segmentation of 3d point clouds with strongly varying density. ISPRS Annals - ISPRS Congress, Prague, 2016
6DLUT_SR0.5630.8601.000.9530.8490.5480.2960.8320.1920.3200.518
Anonymous submission
7DeepNet0.4370.77264800.000.8380.3850.5480.0850.8410.1510.2230.423
Anonymous submission
8TML-PCR0.3840.7400.000.7260.7300.4850.2240.7070.0500.0000.150
Mind the gap: modeling local and global context in (road) networks: Javier Montoya, Jan D. Wegner, Lubor Ladicky, Konrad Schindler. In: German Conference on Pattern Recognition (GCPR), M√ľnster, Germany, 2014